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1 Introduction 
Burnishing is a chipless finishing operation in which a hard tool (often spherical or roller-type) is 

pressed against the surface of a workpiece, causing plastic deformation that refines the surface 

topography. When the contact pressure exceeds the material yield strength, the asperities flatten 

and the grains near the surface are plastically deformed, resulting in a reduction in roughness and 

improved material properties. 

The experimental apparatus developed under the MISCE project integrates a servo-driven crank 

mechanism, allowing static and dynamic burnishing modes for lathes. Figure 2 shows the 

schematic of the crank-based mechanism, including the servo motor, crank arms, force sensor, 

and burnishing head. The system can be attached to a lathe or another machine tool, allowing the 

workpiece to rotate or translate while the burnisher remains in contact. 

Figure 1 outlines the geometric relationships and functional arrangement of the burnishing tool. 

 

Figure 1 Schematic of the crank-based burnishing mechanism, showing the geometric layout and functional arrangement 

of components 
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Figure 2 CAD model of the burnisher: (1) servo motor, (2) crank arms, (3) mounting base for attachment to the lathe, (4) 
EMS110 force sensor, and (5) burnishing head with a spring inside 

 

The burnishing tool has an internal spring, in this case, a compression spring rated for max 211N 

that plays a central role in maintaining a stable and repeatable load on the spherical tip. In static 

burnishing mode, this spring ensures a constant contact pressure between the tool and the surface 

of the workpiece. By adjusting the spring stiffness and its initial compression, it is possible to 

control the depth of plastic deformation and thus achieve uniform surface finishing.  

In static burnishing, spring precompression directly translates into the overall force exerted on the 

workpiece. In dynamic burnishing, spring precompression also defines the tilt angle 𝜑 of the crank 

arm at the exact moment when the tool engages with the shaft. Precise control of this contact point 

timing under oscillatory forces is vital for consistent material deformation. 

Derivation of the key relationships describing the operation of the burnisher, as illustrated in the 

figures above is described in sections 2 and 3, in sections 4 and 5 the static and the dynamic 

burnishing processes are explained. 

2 Derivation of the Distance Formula for 𝐴𝐷 
Below is a step-by-step derivation and the final formula for the distance 𝐴𝐷 as a function of the 

given parameters 𝑎, 𝑏, 𝑐, and the angle 𝜑. 

2.1 Assumptions and Geometric Description 

1. The mechanism consists of three segments: 

o 𝐴 → 𝐵 of length 𝑎, 

o 𝐵 → 𝐶 of length 𝑏, 

o 𝐶 → 𝐷 of length 𝑐. 

2. Point 𝐴 is fixed (e.g., at coordinates (0,0)). 
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3. The angle 𝜑 is between segment 𝐴 → 𝐵 and the horizontal axis (𝑥). The coordinate system 

is defined with 𝐴 at the origin, the 𝑥-axis as horizontal, and the 𝑦-axis as vertical. 

4. The coordinates of point 𝐵 can be written as: 

𝐵𝑥 = 𝑎cos(𝜑), 𝐵𝑦 = 𝑎sin(𝜑). 

5. Point 𝐶 is connected to 𝐵 by a rod of length 𝑏. Introducing an additional angle 𝜃, 

representing the angle of segment 𝐵 → 𝐶 with respect to the horizontal axis (𝑥): 

𝐶𝑥 = 𝐵𝑥 + 𝑏cos(𝜃) = 𝑎cos(𝜑) + 𝑏cos(𝜃), 

𝐶𝑦 = 𝐵𝑦 + 𝑏sin(𝜃) = 𝑎sin(𝜑) + 𝑏sin(𝜃). 

6. Assume point 𝐶 moves along a horizontal guide. This means 𝐶𝑦 = 0, providing a condition 

to determine 𝜃: 

𝑎sin(𝜑) + 𝑏sin(𝜃) = 0. 

  Hence: 

sin(𝜃) = −
𝑎sin(𝜑)

𝑏
. 

7. Using the trigonometric identity sin2(𝜃) + cos2(𝜃) = 1: 

cos2(𝜃) = 1 − sin2(𝜃) = 1 − (
𝑎2sin2(𝜑)

𝑏2
) =

𝑏2 − 𝑎2sin2(𝜑)

𝑏2
. 

  Taking the positive root (assuming a specific orientation of the mechanism): 

cos(𝜃) =
√𝑏2 − 𝑎2sin2(𝜑)

𝑏
. 

8. Substituting: 

𝐶𝑥 = 𝑎cos(𝜑) + 𝑏cos(𝜃) = 𝑎cos(𝜑) + √𝑏2 − 𝑎2sin2(𝜑). 

  Since 𝐶𝑦 = 0, point 𝐶 lies on the 𝑥-axis. 

9. Point 𝐷 is located at a horizontal distance 𝑐 from 𝐶 (as shown in the diagram). Assuming 𝐷 

is to the right of 𝐶: 

𝐷𝑥 = 𝐶𝑥 + 𝑐 = 𝑎cos(𝜑) + √𝑏2 − 𝑎2sin2(𝜑) + 𝑐, 𝐷𝑦 = 0. 

10. The distance 𝐴𝐷 is simply the length of the vector from 𝐴 = (0,0) to 𝐷 = (𝐷𝑥 , 0): 

𝐴𝐷 = √(𝐷𝑥 − 0)2 + (0 − 0)2 = |𝐷𝑥| = 𝑎cos(𝜑) + √𝑏2 − 𝑎2sin2(𝜑) + 𝑐. 

2.2 Final Formula and MATLAB script 

Thus, the formula for 𝐴𝐷 is: 

𝐴𝐷(𝜑) = 𝑎cos(𝜑) + 𝑐 + √𝑏2 − 𝑎2sin2(𝜑) . 

% Script 1 

% Symbolic derivation of the formula for the distance AD 

clear all 
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close all 
 

% Assumptions for example values: 

a = 26; b = 70; c = 181; 

% phi - angular variable 
 

% Points: 

% A = (0,0) (fixed) 

% B = (a*cos(phi), a*sin(phi)) 

% C = B + (b*cos(theta), b*sin(theta)) with the condition C_y=0 

% D = C_x + c (on the x-axis) 

% We are looking for: AD = D_x, since Dy=0 and A=(0,0). 
 

%% Defining symbolic variables 

syms a b c phi real 

syms theta real 
 

% Position of point B: 

Bx = a*cos(phi); 

By = a*sin(phi); 
 

% Condition for point C: 

% C_y = 0 = a*sin(phi) + b*sin(theta) 

sin(theta) = - (a*sin(phi))/b; 

sin_theta = -(a*sin(phi))/b; 
 

% Calculating cos(theta) using the trigonometric identity 

cos_theta = sqrt(1 - sin_theta^2); 
 

% Position of point C 

Cx = a*cos(phi) + b*cos_theta; 

Cy = 0; 
 

% Position of point D 

Dx = Cx + c; 

Dy = 0; 
 

% Distance AD 

% AD = Dx, because D_y=0 and A=(0,0) 

AD = Dx; 

% Simplifying the expression for AD 

AD_simplified = simplify(AD); 

 

% Generating a plot of the distance |AD| as a function of angle /phi 
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a_val = 26; 

b_val = 70; 

c_val = 181; 

phi_vals = linspace(0, 2*pi, 200); 

% Substitute scalar values 

AD_numeric = subs(AD_simplified, [a b c], [a_val b_val c_val]); 
 

% Substitute the vector of phi_vals separately 

AD_vals = double(subs(AD_numeric, phi, phi_vals)); 
 

%% Plot 

figure 

plot(phi_vals, AD_vals, 'LineWidth', 2) 

grid on 

xlabel('\phi [rad]') 

ylabel('|AD| [mm]') 

title('Dependence of distance |AD| on angle \phi') 

 

 
Figure 3 Dependence of distance |AD| on angle 𝜑 

 

3 Derivation of the Velocity of Point 𝐷 
Below is the derivation of the velocity of point 𝐷 as a function of the angular velocity 𝜑̇. At the end, 

a MATLAB script is presented for visualizing intermediate steps and generating plots. 

3.1 Derivation 

The expression for the position of point 𝐷 (on the 𝑥-axis) is: 

𝐷𝑥(𝜑) = 𝑎cos(𝜑) + 𝑐 + √𝑏2 − 𝑎2sin2(𝜑). 
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Point 𝐷 lies on the 𝑥-axis, so its velocity is the derivative of this expression with respect to time: 

𝑣𝐷 =
𝑑𝐷𝑥
𝑑𝑡

=
𝑑𝐷𝑥
𝑑𝜑

⋅
𝑑𝜑

𝑑𝑡
=
𝑑𝐷𝑥
𝑑𝜑

𝜑̇. 

First, compute the derivative 
𝑑𝐷𝑥

𝑑𝜑
. 

3.1.1 Component Derivatives: 

𝑑

𝑑𝜑
[𝑎cos(𝜑)] = −𝑎sin(𝜑), 

𝑑

𝑑𝜑
[𝑐] = 0, 

𝑑

𝑑𝜑
[√𝑏2 − 𝑎2sin2(𝜑)] =

1

2√𝑏2 − 𝑎2sin2(𝜑)
⋅ (−2𝑎2sin(𝜑)cos(𝜑)). 

Simplifying: 

𝑑

𝑑𝜑
[√𝑏2 − 𝑎2sin2(𝜑)] = −

𝑎2sin(𝜑)cos(𝜑)

√𝑏2 − 𝑎2sin2(𝜑)
. 

Combining these: 

𝑑𝐷𝑥
𝑑𝜑

= −𝑎sin(𝜑) −
𝑎2sin(𝜑)cos(𝜑)

√𝑏2 − 𝑎2sin2(𝜑)
. 

3.2 Final Formula and MATLAB script 

Introducing 𝜑̇, the velocity 𝑣𝐷(𝜑) is: 

𝑣𝐷(𝜑) = 𝜑̇ [−𝑎sin(𝜑) −
𝑎2sin(𝜑)cos(𝜑)

√𝑏2 − 𝑎2sin2(𝜑)
] . 

% Script 2 

% Derivation of the formula for the velocity of point D 
 

% Define symbolic variables 

syms a b c phi phi_prime real 
 

% Position of point D, expressed earlier: 

D_x = a*cos(phi) + c + sqrt(b^2 - a^2*sin(phi)^2); 
 

% Derivative dD_x/dphi 

dDxdphi = diff(D_x, phi); 
 

% Define angular velocity: phi_prime = dphi/dt 

% Velocity of point D: 

v_D = dDxdphi * phi_prime; 
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% Plots 

% Assume example values for a, b, c, and a constant angular velocity phi_prime 

a_val = 26; 

b_val = 70; 

c_val = 181; 

phi_prime_val = 1; % [rad/s], for example 
 

phi_vals = linspace(0, 2*pi, 200); 
 

% Calculate AD as a function of phi (distance) 

AD_expr = a*cos(phi) + c + sqrt(b^2 - a^2*sin(phi)^2); 

AD_numeric = subs(AD_expr, [a b c], [a_val b_val c_val]); 

AD_vals = double(subs(AD_numeric, phi, phi_vals)); 
 

% Calculate velocity v_D as a function of phi 

v_D_expr = subs(v_D, [a b c phi_prime], [a_val b_val c_val phi_prime_val]); 

v_D_vals = double(subs(v_D_expr, phi, phi_vals)); 
 

% Plot of velocity v_D as a function of phi 

figure 

plot(phi_vals, v_D_vals, 'LineWidth', 2, 'Color', 'r') 

grid on 

xlabel('\phi [rad]') 

ylabel('v_D [mm/s]') 

title('Velocity of point D as a function of \phi') 

 

 

 
Figure 4 Velocity of point D as a function of 𝜑 

 

clear all 
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% Determining phi_prime as a function of v_D 

% a, b, c given, phi - angle, v_D - constant linear velocity, phi_prime = dphi/dt 
 

syms a b c phi v_D real 
 

% Expression for the position D_x(phi) from previous derivations: 

D_x = a*cos(phi) + c + sqrt(b^2 - a^2*sin(phi)^2); 
 

% Derivative dD_x/dphi: 

dDxdphi = diff(D_x, phi); 
 

% Expression for v_D: 

% v_D = phi_prime * dDxdphi => phi_prime = v_D / dDxdphi 

phi_prime = v_D / dDxdphi; 
 

% Assume example values: 

a_val = 26; 

b_val = 70; 

c_val = 181; 

v_D_val = 10; % Example constant linear velocity 
 

% Define two ranges of the angle 

phi_vals_1 = linspace(0.1, pi - 0.1, 100); % First range <0.1, pi-0.1> 

phi_vals_2 = linspace(pi + 0.1, 2*pi - 0.1, 100); % Second range <pi+0.1, 2pi-0.1> 
 

% Combine the two ranges into one vector 

phi_vals = [phi_vals_1, phi_vals_2]; % Concatenating vectors 
 

% Use arrayfun to compute a numeric array of values: 

phi_prime_numeric = arrayfun(@(ph) double(subs(phi_prime, ... 

    [a b c v_D phi], [a_val b_val c_val v_D_val ph])), phi_vals); 
 

% Now phi_prime_numeric is a vector of angular velocity values 

% corresponding to the phi values in phi_vals. 
 

figure 

plot(phi_vals, phi_prime_numeric, 'LineWidth', 2) 

grid on 

xlabel('\phi [rad]') 

ylabel('\phi'' [rad/s]') 

title('Angular velocity \phi'' as a function of \phi for constant v_D = 10 [mm/s]') 
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Figure 5 Angular velocity 𝜑̇ as a function of 𝜑 for constant  𝑣𝐷 = 10 [mm/s] 

 

4 Indentation Depth Under Static Burnishing  

This section presents a step-by-step procedure for determining the indentation depth when a steel 
spherical indenter plastically deforms an aluminum sample under a static load 𝐹. In this version, 
we explicitly show how to solve the Brinell equation for the indentation diameter 𝑑. 

4.1 Assumptions and Model 

• Burnisher Head: A sphere with a diameter of 𝑠 = 3 mm. The radius of the sphere: 

𝑅 =
𝑠

2
= 1.5 mm = 0.0015 m. 

• Mass of the Head: 𝑚 = 20 g = 0.02 kg. 

4.2 Overview of the Process 

• A constant force 𝐹 is applied via a spherical indenter onto the aluminum sample. 

• The resulting plastic indentation on the surface has a measurable (or computable) 
diameter 𝑑. 

• Using the Brinell hardness relationship, we link the indentation diameter 𝑑 to the applied 
force 𝐹. 

• Once 𝑑 is known, the indentation depth 𝛿 can be found via spherical geometry. 
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4.3 Brinell Hardness Equation and solving for 𝑑 

For a spherical indenter of diameter 𝐷 = 2𝑅 pressed into a material (e.g., aluminum) with an 
applied force 𝐹, the Brinell hardness (HB or BHN) is classically defined by 

HB  =  0.102
2 𝐹

𝜋 𝐷(𝐷 − √𝐷2 − 𝑑2)
, 

where 

• 𝐹 is the applied load (in newtons, N), 

• 𝐷 is the indenter diameter (in millimeters, mm), 

• 𝑑 is the measured (or unknown) diameter of the indentation (in mm). 

If you know both HB (hardness) and 𝐹 (applied load) and want to calculate the indentation diameter 
𝑑, you can rearrange the Brinell equation: 

𝑑 = √
0.408𝐹

𝜋𝐷 HB
 − (

0.204𝐹

𝜋𝐷 HB
)
2

. 

In practice, you may also solve the original Brinell equation numerically for 𝑑, but this closed-form 
manipulation is a direct approach. 

4.4 Indentation Depth via Spherical Geometry 

Once 𝑑 is determined (from either measurement or the rearranged Brinell equation), the 
indentation depth 𝛿 is computed by a simple geometrical formula for a spherical cap: 

𝛿 = 𝑅 − √𝑅2 − (
𝑑

2
)
2

. 

Here, 

• 𝑅 is the radius of the spherical indenter (in mm), 

• 𝑑 is the diameter of the imprint (in mm), 

• 𝛿 is the depth of the imprint (in mm). 

4.5 Step by step procedure 

1. Apply the static load 𝐹 on the aluminum sample with the steel ball indenter by moving the 
burnisher into the workpiece (read the value of F on the HMI screen) 

2. Start the rotation of the aluminium workpiece on the lathe and engage the lathe feed 

3. Stop the lathe 

4. Perform the steps 1-3 for different values of F applying them to different sections of the 
workpiece. 

5. Dismount the workpiece 

6. Calculate and measure the diameter of the indentation 𝑑: 
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o Direct measurement: Use a microscope, profilometer, or optical device to measure 

𝑑. 

o Calculation (Brinell): 

▪ Take known values of 𝐹, HB, and 𝐷. 

▪ Use 

𝑑 = √
0.408𝐹

𝜋𝐷 HB
 − (

0.204𝐹

𝜋𝐷 HB
)
2

, 

 

  to find 𝑑. 

7. Compute the indentation depth 𝛿 using: 

𝛿 = 𝑅 − √𝑅2 − (
𝑑

2
)
2

 

 

8. Compare the measurement to the calculations 

 

4.6 Example 

The static burnishing tests were carried out on an AW-5754 aluminum shaft (hardness: 75 [HBW], 

diameter: 106.5 [mm]) mounted on a lathe, operated at 100 [rpm] with a feed of 1 [mm/rev]. Three 

static burnishing tests were conducted with normal loads of 16, 30, and 45 [N] (see Table I): 

 
Table I. Indentation depth data for static burnishing 

Load  

F[N] 

Calculations 

𝜹[𝝁𝒎] 

Measurement 

𝜹[𝝁𝒎] 

16 6.22 6.2 

30 11.64 10.41 

45 17.42 16.72 
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Figure 6 Comparison of calculated vs. experimentally measured indentation depths 
(δ) in static burnishing. 

 

Static burnishing experiments were conducted with the servo motor set to a fixed angular 
position so that the normal load on the workpiece remained constant throughout the process. 
Although the theoretical curves slightly overpredict depths at some intermediate points, the overall 
correlation with the measured data is strong.  

The surface was examined using a Mitutoyo SJ-210 profilometer. 

4.7 Practical Notes 

• Material Properties: The hardness of aluminum depends on its alloy composition and 
treatment. Ensure the hardness (HB) corresponds to your specific material condition. 

• Indenter Hardness: The steel ball (often tungsten carbide in real Brinell tests) should be 
significantly harder than aluminum, so it does not deform. 

• Accuracy: Surface finish, sample preparation, and force application duration can affect the 
measured indentation diameter and final results. 

This procedure and these formulas enable you to quantify the indentation depth 𝛿 under static 
plastic deformation for an aluminum sample using a steel spherical indenter of radius 𝑅 = 3 mm. 

 

5 Indentation Depth Under Dynamic Burnishing 
The following calculations assume that the entire kinetic energy of the burnisher head is used for 

permanent deformation (indentation) in the soft material (aluminum). In practice, to fully determine 

the force and depth of indentation, material properties (e.g., hardness 𝐻 or yield strength of 

aluminum) are required. 

5.1 Assumptions and Model 

• Burnisher Head: A sphere with a diameter of 𝑠 = 3 mm. The radius of the sphere: 

𝑅 =
𝑠

2
= 1.5 mm = 0.0015 m. 

• Mass of the Head: 𝑚 = 20 g = 0.02 kg. 
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• Impact Velocity: 𝑣𝑑 (assumed to be known and constant). 

The burnisher head presses into aluminum, creating an indentation. It is assumed that the process 

is dominated by plastic deformation, and the concept of hardness (𝐻) is used. Hardness 𝐻 (in Pa) 

is defined as: 

𝐻 =
𝐹

𝐴
, 

where 𝐹 is the force and 𝐴 is the contact area at the indentation state. 

5.2 Contact Area 

For small spherical indentations, the contact area can be approximated as: 

𝑎(𝛿) ≈ √2𝑅𝛿, 

where 𝛿 is the depth of the indentation. The contact area is then given by: 

𝐴(𝛿) = 𝜋𝑎(𝛿)2 = 𝜋(2𝑅𝛿). 

5.3 Force Pressing the Sphere 

The force pressing the sphere at an indentation depth 𝛿 is given by the definition of hardness: 

𝐹(𝛿) = 𝐻 ⋅ 𝐴(𝛿) = 𝐻 ⋅ 𝜋(2𝑅𝛿) = 2𝜋𝑅𝐻𝛿. 

5.4 Kinetic Energy and Indentation Depth 

The kinetic energy of the burnisher head before impact is: 

𝐸 =
1

2
𝑚𝑣𝑑

2. 

This energy is entirely used for deformation: 

𝐸 = ∫ 𝐹
𝛿

0

(𝛿) 𝑑𝛿. 

Substituting 𝐹(𝛿) = 2𝜋𝑅𝐻𝛿: 

𝐸 = ∫ 2
𝛿

0

𝜋𝑅𝐻𝛿 𝑑𝛿 = 2𝜋𝑅𝐻
𝛿2

2
= 𝜋𝑅𝐻𝛿2. 

Equating the two expressions for energy: 

1

2
𝑚𝑣𝑑

2 = 𝜋𝑅𝐻𝛿2. 

Solving for 𝛿: 

𝛿 = √
𝑚𝑣𝑑

2

2𝜋𝑅𝐻
. 

5.5 Maximum Force 

The maximum force (achieved at the maximum indentation depth 𝛿) is: 
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𝐹max = 𝐹(𝛿) = 2𝜋𝑅𝐻𝛿 = 2𝜋𝑅𝐻√
𝑚𝑣𝑑

2

2𝜋𝑅𝐻
. 

Simplifying: 

𝐹max = 𝑣𝑑√2𝜋𝑅𝐻𝑚. 

The velocity 𝑣𝐷 was calculated in section 3.2 and is equal to: 

𝑣𝐷(𝜑) = 𝜑̇ [−𝑎sin(𝜑) −
𝑎2sin(𝜑)cos(𝜑)

√𝑏2 − 𝑎2sin2(𝜑)
] 

5.6 Summary of Key Formulas and MATLAB script 

• Depth of indentation: 

𝛿 = √
𝑚𝑣𝑑

2

2𝜋𝑅𝐻
. 

• Maximum force: 

𝐹max = 𝑣𝑑√2𝜋𝑅𝐻𝑚 . 

% Script 3 

% Determining force and indentation depth 
 

%% Symbolic data 

syms m v_d R H real 

syms delta real 
 

% Kinetic energy 

E = (1/2)*m*v_d^2; 
 

% Energy equation: 

% E = pi*R*H*delta^2 

% delta^2 = E/(pi*R*H) 

% delta = sqrt(E/(pi*R*H)) 
 

delta_expr = sqrt(E/(pi*R*H)); 
 

% Maximum force: 

% F_max = F(delta) = 2*pi*R*H*delta 

F_max_expr = 2*pi*R*H*delta_expr; 
 

%% Substituting example values 

m_val = 0.02;      % kg 

v_d_val = 1;        % m/s 
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R_val = 0.0015;     % m (radius 1.5mm) 

H_val = 5e8;        % Pa 
 

delta_num = double(subs(delta_expr, [m v_d R H], [m_val v_d_val R_val H_val])); 

F_max_num = double(subs(F_max_expr, [m v_d R H], [m_val v_d_val R_val H_val])); 
 

%% Plotting dependence on velocity v_d 

v_d_values = linspace(0.1, 3, 100); 
 

% Here, delta_expr and F_max_expr are single scalar expressions 

% For each v_d, substitute values to get a scalar result 
 

delta_values = arrayfun(@(vd) double(subs(delta_expr, [m R H v_d], [m_val R_val 

H_val vd])), v_d_values); 

F_values = arrayfun(@(vd) double(subs(F_max_expr, [m R H v_d], [m_val R_val H_val 

vd])), v_d_values); 
 

figure 

subplot(2,1,1) 

plot(v_d_values, delta_values*1000, 'LineWidth', 2) 

grid on 

xlabel('v_d [m/s]') 

ylabel('delta [mm]') 

title('Indentation depth as a function of velocity') 
 

subplot(2,1,2) 

plot(v_d_values, F_values, 'LineWidth', 2, 'Color', 'r') 

grid on 

xlabel('v_d [m/s]') 

ylabel('F_{max} [N]') 

title('Maximum force as a function of velocity') 
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Figure 7 Indentation depth and maximum force as a function of velocity 

 

5.7 Step by step procedure 

1. Move the tip of the burnisher towards the workpiece until it makes contact. Read the value 
of force F (or spring deformation Δ) when the mechanism's arms are fully extended (this 
represents the additional static force applied to the workpiece by inner spring compression).  

2. Set the servo angular velocity to, for example, 𝜑̇ = 500 rpm 

3. Start the rotation and engage the lathe feed. 

4. Stop the lathe and the servo 

5. Perform the steps 1-3 for different values of F or Δ and servo rpm, applying them to 

different sections of the workpiece. 

6. Dismount the workpiece 

7. Calculate and measure the velocity 𝑣𝐷 and the depth of the indentation : 

𝑣𝐷(𝜑) = 𝜑̇ [−𝑎sin(𝜑) −
𝑎2sin(𝜑)cos(𝜑)

√𝑏2 − 𝑎2sin2(𝜑)
], 

𝛿 = √
𝑚𝑣𝑑

2

2𝜋𝑅𝐻
. 

8. Compare the measurement of 𝛿 to the calculations 
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5.8 Example 

The static burnishing tests were carried out on the same aluminum shaft as in static burnishing. 

Twelve dynamic burnishing tests with the 30g burnisher head were performed, measuring the final 

indentation depth 𝛿 at four different servo angular velocities 𝜑̇ = 100, 250, 350, 500 [rpm] and three 

preset spring compressions Δ = 1, 2.5, 5 [mm]. (see Table II): 

 
Table III. Indentation depth data for dynamic burnishing 

Angular velocity 

𝝋̇[rpm] 

Spring deformation 

𝚫 [mm] 

Calculations 

𝜹[𝝁𝒎] 

Measurement 

𝜹[𝝁𝒎] 

100 1 8.37 8.96 

250 1 10.69 8.84 

350 1 12.24 11.83 

500 1 14.56 15.48 

100 2.5 11.48 10.92 

250 2.5 14.99 13.95 

350 2.5 17.33 16.74 

500 2.5 20.84 19.40 

100 5 16.58 14.48 

250 5 21.18 16.91 

350 5 24.25 23.57 

500 5 28.86 35.70 

 

 

Figure 8 Comparison of calculated vs. experimentally measured indentation depths 
(δ) in dynamic burnishing for three levels of initial spring compression (∆). 
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The figure 8 illustrates the correlation between dynamic burnishing parameters, specifically 

servomotor angular velocity 𝜑̇, initial spring compression Δ and the resulting indentation depth in 

aluminum. As the angular velocity increases, the higher the relative velocity of the burnisher head 

imparts a greater kinetic energy to the contact interface, causing deeper plastic deformation. 

Likewise, elevating the spring compression amplifies the normal force, further promoting material 

flow under the spherical tool and thereby increasing the observed indentation. Minor deviations 

between experimental measurements and theoretical predictions probably arise from factors such 

as friction, slight misalignments in the linkage, and localized heating effects. However, the overall 

consistency between the modeled and measured data affirms that higher angular velocity and 

larger spring preload systematically lead to more pronounced surface densification under dynamic 

burnishing conditions. 

 

5.9 Practical Notes 

• In dynamic burnishing, the contact between the burnisher head and the workpiece is 
maintained until the mechanism arm is fully extended. This means that the deformation is 
not only a result of the impact but also includes additional static deformation. 


